Cycles

1 Which one of the following equations correctly defines the enthalpy change of formation of carbon monoxide?

 $\begin{array}{c|cccc} A & C_{(s)} \ + \ \frac{1}{2}O_{2(g)} \ \rightarrow \ CO_{(g)} \\ C & C_{(s)} \ + \ CO_{2(g)} \ \rightarrow \ 2CO_{(g)} \end{array} \qquad \begin{array}{c} B & C_{(s)} \ + \ O_{(g)} \ \rightarrow \ CO_{(g)} \\ D & C_{(g)} \ + \ \frac{1}{2}O_{2(g)} \ \rightarrow \ CO_{(g)} \end{array}$

2 Which one of the following equations correctly defines the enthalpy change of formation of ethanol, $C_2H_5OH_{(l)}$?

А	2C _(g) + 6⊢	$I_{(g)} + O_{(g)} \rightarrow C_2 H_5 O H_{(I)}$	В	4C _(s) +	$6H_{2(g)} + O_{2(g)} \rightarrow 2C_2H_5OH_{(I)}$
C	2C _(s) + 3H	I _{2(g)} + 1/2O _{2(g)} → C ₂ H ₅ OH _(l)	D	2C _(s) +	$6H_{(g)} + O_{(g)} \rightarrow C_2H_5OH_{(I)}$

3 Consider the data in the table below

Substance	Standard enthalpy change of combustion / kJ mol ⁻¹
hydrogen (g)	-300
carbon (s)	-400
benzene (I)	-3350

What is the standard enthalpy change of formation of liquid benzene calculated to be?

+50KJmol⁻¹

4 When 1.00 g of calcium is burned in oxygen to give CaO, the heat energy liberated is 15.9 kJ (at 25 °C and 1 atm). The standard enthalpy of formation of CaO is

636KJmol⁻¹

5 The enthalpies of combustion of ethene, C_2H_4 , and butene, C_4H_8 , are represented below as ΔH_1 and ΔH_2 .

What is the value for the enthalpy of the reaction of C_2H_4 to form C_4H_8 ?

 $2C_2H_4 \rightarrow C_4H_8 \qquad \Delta H = ?$

$\Delta H = 2x\Delta H_1 - \Delta H_2$

6 Calculate the enthalpy change, ΔH , (in kJ mol⁻¹) for the reaction

 $CH_3OH_{(l)} + 1\frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$

using the enthalpies of formation, $\Delta H_{f^{o}}$, below

Compound CH ₃ OH _(l)		CO _{2(g)}	$H_2O_{(g)}$	
ΔH_{f}^{o} / kJ mol ⁻¹	-238.7	-393.5	-241.8	

Cycles

7 The combustion of benzene, C_6H_6 , may be written as $2C_6H_{6(l)} + 15O_{2(g)} \rightarrow 12CO_{2(g)} + 6H_2O_{(l)}$ Using the information in the table, calculate the standard enthalpy change of combustion, ΔH_{comb} , for benzene in kJ mol⁻¹

-3265 KJmol⁻¹ (if you got -6530 then given the equation has 2 moles of benzene, you need to divide your final answer by 2.)

8 The enthalpy of combustion of butane, C_4H_{10} , is -2877 kJ mol⁻¹. The enthalpy of formation of CO₂ is -395 kJ mol⁻¹ and that of H₂O is -286 kJ mol⁻¹. What is the enthalpy of formation of butane in kJ mol⁻¹?

-133 KJmol⁻¹

9 Some standard heats of formation, $\Box H_f^{o}$, are as follows:

What is ΔH° , in kJ for the reaction

 $3CH_{4(g)} + 4O_{3(g)} \rightarrow 3CO_{2(g)} + 6H_2O_{(g)}$

-2981.6 KJmol⁻¹

10 All of the following have a standard heat of formation of zero at 25 °C and 1.00 atm, except

A	Br _{2(I)}	В	I _{2(s)}	C	H ₂ O _(I)	D	He _(g)
---	--------------------	---	-------------------	---	---------------------------------	---	-------------------

11 Given the following enthalpies of formation

	ΔH_{f} / kJ mol ⁻¹
CaBr _{2(s)}	-682.8
Ca ²⁺ (g)	1925.9
Br ⁻ (g)	-233.9

What is the value of ΔH (in kJ mol⁻¹) for the reaction: CaBr_{2(s)} \rightarrow Ca²⁺(g) + 2Br_(g)

2140.9 KJmol⁻¹

Compound	ΔH_{f} / kJ mol ⁻¹	
$C_6H_{6(I)}$	+49	
CO _{2(g)}	-393	
H ₂ O _(I)	-286	

Compound	ΔH_{f} / kJ mol ⁻¹
CH _{4(g)}	-74.8
CO _{2(g)}	-394
$H_2O_{(g)}$	-242
O _{3(g)}	+143

	Cycles	
12	The standard enthalpy changes of formation of four compounds are given below	

	C_2H_4	C_2H_6	C_4H_8	C ₄ H ₁₀
∆H _f /kJ mol ⁻¹	+50	-85	-10	-125

Which of the following reactions are exothermic?

$I \qquad C_{4}H_{8} + H_{2} \rightarrow C_{4}H_{10} \qquad II \qquad C_{2}H_{4}$	$+ C_2 H_6 \rightarrow C_4 H_{10} \qquad \text{III}$	$2C_2H_6 \rightarrow C_4H_{10} + H_2$
---	--	---------------------------------------

13 Calculate the standard enthalpy of formation of ethene $(C_2H_{4(g)})$ given the following data: [3]

	$\Delta H_{combustion}$ /kJ mol ⁻¹	
C _(s)	-394	
H _{2(g)}	-286	
$H_2C=CH_{2(g)}$	-1393	

+33 KJmol⁻¹